Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 11: 1346242, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38567100

RESUMO

Esophageal cancer (EC) remains a significant health challenge globally, with increasing incidence and high mortality rates. Despite advances in treatment, there remains a need for improved diagnostic methods and understanding of disease progression. This study addresses the significant challenges in the automatic classification of EC, particularly in distinguishing its primary subtypes: adenocarcinoma and squamous cell carcinoma, using histopathology images. Traditional histopathological diagnosis, while being the gold standard, is subject to subjectivity and human error and imposes a substantial burden on pathologists. This study proposes a binary class classification system for detecting EC subtypes in response to these challenges. The system leverages deep learning techniques and tissue-level labels for enhanced accuracy. We utilized 59 high-resolution histopathological images from The Cancer Genome Atlas (TCGA) Esophageal Carcinoma dataset (TCGA-ESCA). These images were preprocessed, segmented into patches, and analyzed using a pre-trained ResNet101 model for feature extraction. For classification, we employed five machine learning classifiers: Support Vector Classifier (SVC), Logistic Regression (LR), Decision Tree (DT), AdaBoost (AD), Random Forest (RF), and a Feed-Forward Neural Network (FFNN). The classifiers were evaluated based on their prediction accuracy on the test dataset, yielding results of 0.88 (SVC and LR), 0.64 (DT and AD), 0.82 (RF), and 0.94 (FFNN). Notably, the FFNN classifier achieved the highest Area Under the Curve (AUC) score of 0.92, indicating its superior performance, followed closely by SVC and LR, with a score of 0.87. This suggested approach holds promising potential as a decision-support tool for pathologists, particularly in regions with limited resources and expertise. The timely and precise detection of EC subtypes through this system can substantially enhance the likelihood of successful treatment, ultimately leading to reduced mortality rates in patients with this aggressive cancer.

2.
Genome Med ; 16(1): 46, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38584274

RESUMO

BACKGROUND: Genome sequencing of large biobanks from under-represented ancestries provides a valuable resource for the interrogation of Mendelian disease burden at world population level, complementing small-scale familial studies. METHODS: Here, we interrogate 6045 whole genomes from Qatar-a Middle Eastern population with high consanguinity and understudied mutational burden-enrolled at the national Biobank and phenotyped for 58 clinically-relevant quantitative traits. We examine a curated set of 2648 Mendelian genes from 20 panels, annotating known and novel pathogenic variants and assessing their penetrance and impact on the measured traits. RESULTS: We find that 62.5% of participants are carriers of at least 1 known pathogenic variant relating to recessive conditions, with homozygosity observed in 1 in 150 subjects (0.6%) for which Peninsular Arabs are particularly enriched versus other ancestries (5.8-fold). On average, 52.3 loss-of-function variants were found per genome, 6.5 of which affect a known Mendelian gene. Several variants annotated in ClinVar/HGMD as pathogenic appeared at intermediate frequencies in this cohort (1-3%), highlighting Arab founder effect, while others have exceedingly high frequencies (> 5%) prompting reconsideration as benign. Furthermore, cumulative gene burden analysis revealed 56 genes having gene carrier frequency > 1/50, including 5 ACMG Tier 3 panel genes which would be candidates for adding to newborn screening in the country. Additionally, leveraging 58 biobank traits, we systematically assess the impact of novel/rare variants on phenotypes and discover 39 candidate large-effect variants associating with extreme quantitative traits. Furthermore, through rare variant burden testing, we discover 13 genes with high mutational load, including 5 with impact on traits relevant to disease conditions, including metabolic disorder and type 2 diabetes, consistent with the high prevalence of these conditions in the region. CONCLUSIONS: This study on the first phase of the growing Qatar Genome Program cohort provides a comprehensive resource from a Middle Eastern population to understand the global mutational burden in Mendelian genes and their impact on traits in seemingly healthy individuals in high consanguinity settings.


Assuntos
Diabetes Mellitus Tipo 2 , Recém-Nascido , Humanos , Bancos de Espécimes Biológicos , Frequência do Gene , Fenótipo , Homozigoto
3.
Cancer Metastasis Rev ; 43(1): 197-228, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38329598

RESUMO

Cancer is a complex disease displaying a variety of cell states and phenotypes. This diversity, known as cancer cell plasticity, confers cancer cells the ability to change in response to their environment, leading to increased tumor diversity and drug resistance. This review explores the intricate landscape of cancer cell plasticity, offering a deep dive into the cellular, molecular, and genetic mechanisms that underlie this phenomenon. Cancer cell plasticity is intertwined with processes such as epithelial-mesenchymal transition and the acquisition of stem cell-like features. These processes are pivotal in the development and progression of tumors, contributing to the multifaceted nature of cancer and the challenges associated with its treatment. Despite significant advancements in targeted therapies, cancer cell adaptability and subsequent therapy-induced resistance remain persistent obstacles in achieving consistent, successful cancer treatment outcomes. Our review delves into the array of mechanisms cancer cells exploit to maintain plasticity, including epigenetic modifications, alterations in signaling pathways, and environmental interactions. We discuss strategies to counteract cancer cell plasticity, such as targeting specific cellular pathways and employing combination therapies. These strategies promise to enhance the efficacy of cancer treatments and mitigate therapy resistance. In conclusion, this review offers a holistic, detailed exploration of cancer cell plasticity, aiming to bolster the understanding and approach toward tackling the challenges posed by tumor heterogeneity and drug resistance. As articulated in this review, the delineation of cellular, molecular, and genetic mechanisms underlying tumor heterogeneity and drug resistance seeks to contribute substantially to the progress in cancer therapeutics and the advancement of precision medicine, ultimately enhancing the prospects for effective cancer treatment and patient outcomes.


Assuntos
Plasticidade Celular , Neoplasias , Humanos , Plasticidade Celular/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Transição Epitelial-Mesenquimal/genética , Transdução de Sinais
4.
Int Rev Cell Mol Biol ; 380: 211-251, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37657859

RESUMO

Epigenetic modifications to DNA are crucial for normal cellular and biological functioning. DNA methylation, histone modifications, and chromatin remodeling are the most common epigenetic mechanisms. These changes are heritable but still reversible. The aberrant epigenetic alterations, such as DNA methylation, histone modification, and non-coding RNA (ncRNA)-mediated gene regulation, play an essential role in developing various human diseases, including cancer. Recent studies show that synthetic and dietary epigenetic inhibitors attenuate the abnormal epigenetic modifications in cancer cells and therefore have strong potential for cancer treatment. In this chapter, we have highlighted various types of epigenetic modifications, their mechanism, and as drug targets for epigenetic therapy.


Assuntos
Epigênese Genética , Neoplasias , Humanos , Montagem e Desmontagem da Cromatina , Metilação de DNA , Processamento de Proteína Pós-Traducional , Neoplasias/tratamento farmacológico , Neoplasias/genética
6.
J Transl Med ; 21(1): 449, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37420216

RESUMO

Traditional cancer treatments use nonspecific drugs and monoclonal antibodies to target tumor cells. Chimeric antigen receptor (CAR)-T cell therapy, however, leverages the immune system's T-cells to recognize and attack tumor cells. T-cells are isolated from patients and modified to target tumor-associated antigens. CAR-T therapy has achieved FDA approval for treating blood cancers like B-cell acute lymphoblastic leukemia, large B-cell lymphoma, and multiple myeloma by targeting CD-19 and B-cell maturation antigens. Bi-specific chimeric antigen receptors may contribute to mitigating tumor antigen escape, but their efficacy could be limited in cases where certain tumor cells do not express the targeted antigens. Despite success in blood cancers, CAR-T technology faces challenges in solid tumors, including lack of reliable tumor-associated antigens, hypoxic cores, immunosuppressive tumor environments, enhanced reactive oxygen species, and decreased T-cell infiltration. To overcome these challenges, current research aims to identify reliable tumor-associated antigens and develop cost-effective, tumor microenvironment-specific CAR-T cells. This review covers the evolution of CAR-T therapy against various tumors, including hematological and solid tumors, highlights challenges faced by CAR-T cell therapy, and suggests strategies to overcome these obstacles, such as utilizing single-cell RNA sequencing and artificial intelligence to optimize clinical-grade CAR-T cells.


Assuntos
Neoplasias Hematológicas , Mieloma Múltiplo , Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Inteligência Artificial , Neoplasias/terapia , Imunoterapia Adotiva , Antígenos de Neoplasias , Microambiente Tumoral , Terapia Baseada em Transplante de Células e Tecidos
7.
J Transl Med ; 21(1): 286, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37118828

RESUMO

BACKGROUND: Osteosarcoma is a type of bone cancer that predominantly affects young individuals, including children and adolescents. The disease progresses through heterogeneous genetic alterations, and patients often develop pulmonary metastases even after the primary tumors have been surgically removed. Ubiquitin-specific peptidases (USPs) regulate several critical cellular processes, such as cell cycle progression, transcriptional activation, and signal transduction. Various studies have revealed the significance of USP37 in the regulation of replication stress and oncogenesis. METHODS: In this study, the Cancer Genome Atlas (TCGA) database was analyzed to investigate USP37 expression. RNA sequencing was utilized to assess the impact of USP37 overexpression and depletion on gene expression in osteosarcoma cells. Various molecular assays, including colony formation, immunofluorescence, immunoprecipitation, and DNA replication restart, were employed to examine the physical interaction between USP37 and PCNA, as well as its physiological effects in osteosarcoma cells. Additionally, molecular docking studies were conducted to gain insight into the nature of the interaction between USP37 and PCNA. Furthermore, immunohistochemistry was performed on archived tissue blocks from osteosarcoma patients to establish a correlation between USP37 and PCNA expression. RESULTS: Analysis of the TCGA database revealed that increased expression of USP37 was linked to decreased progression-free survival (PFS) in osteosarcoma patients. Next-generation sequencing analysis of osteosarcoma cells demonstrated that overexpression or knockdown of USP37 led to the expression of different sets of genes. USP37 overexpression provided a survival advantage, while its depletion heightened sensitivity to replication stress in osteosarcoma cells. USP37 was found to physically interact with PCNA, and molecular docking studies indicated that the interaction occurs through unique residues. In response to genotoxic stress, cells that overexpressed USP37 resolved DNA damage foci more quickly than control cells or cells in which USP37 was depleted. The expression of USP37 varied in archived osteosarcoma tissues, with intermediate expression seen in 52% of cases in the cohort examined. CONCLUSION: The results of this investigation propose that USP37 plays a vital role in promoting replication stress tolerance in osteosarcoma cells. The interaction between USP37 and PCNA is involved in the regulation of replication stress, and disrupting it could potentially trigger synthetic lethality in osteosarcoma. This study has expanded our knowledge of the mechanism through which USP37 regulates replication stress, and its potential as a therapeutic target in osteosarcoma merits additional exploration.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Criança , Humanos , Adolescente , Antígeno Nuclear de Célula em Proliferação , Endopeptidases/genética , Endopeptidases/metabolismo , Simulação de Acoplamento Molecular , Proteases Específicas de Ubiquitina , Osteossarcoma/genética , Neoplasias Ósseas/genética
8.
Adv Protein Chem Struct Biol ; 135: 21-55, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37061333

RESUMO

Regulated cell division is one of the fundamental phenomena which is the basis of all life on earth. Even a single base pair mutation in DNA leads to the production of the dysregulated protein that can have catastrophic consequences. Cell division is tightly controlled and orchestrated by proteins called cyclins and cyclin-dependent kinase (CDKs), which serve as licensing factors during different phases of cell division. Dysregulated cell division is one of the most important hallmarks of cancer and is commonly associated with a mutation in cyclins and CDKs along with tumor suppressor proteins. Therefore, targeting the component of the cell cycle which leads to these characteristics would be an effective strategy for treating cancers. Specifically, Cyclin-dependent kinases (CDKs) involved in cell cycle regulation have been identified to be overexpressed in many cancers. Many studies indicate that oncogenesis occurs in cancerous cells by the overactivity of different CDKs, which impact cell cycle progression and checkpoint dysregulation which is responsible for development of tumor. The development of CDK inhibitors has emerged as a promising and novel approach for cancer treatment in both solid and hematological malignancies. Some of the novel CDK inhibitors have shown remarkable results in clinical trials, such as-Ribociclib®, Palbociclib® and Abemaciclib®, which are CDK4/6 inhibitors and have received FDA approval for the treatment of breast cancer. In this chapter, we discuss the molecular mechanism through which cyclins and CDKs regulate cell cycle progression and the emergence of cyclins and CDKs as rational targets in cancer. We also discuss recent advances in developing CDK inhibitors, which have emerged as a novel class of inhibitors, and their associated toxicities in recent years.


Assuntos
Neoplasias da Mama , Quinases Ciclina-Dependentes , Humanos , Feminino , Ciclo Celular , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Ciclinas
9.
J Transl Med ; 21(1): 171, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869348

RESUMO

BACKGROUND: Type 2 diabetes (T2D) is a critical healthcare challenge and priority in Qatar which is listed amongst the top 10 countries in the world, with its prevalence presently at 17% double the global average. MicroRNAs (miRNAs) are implicated in the pathogenesis of (T2D) and long-term microvascular complications including diabetic retinopathy (DR). METHODS: In this study, a T2D cohort that accurately matches the characteristics of the general population was employed to find microRNA (miRNA) signatures that are correlated with glycemic and ß cell function measurements. Targeted miRNA profiling was performed in (471) T2D individuals with or without DR and (491) (non-diabetic) healthy controls from the Qatar Biobank. Discovery analysis identified 20 differentially expressed miRNAs in T2D compared to controls, of which miR-223-3p was significantly upregulated (fold change:5.16, p = 3.6e-02) and positively correlated with glucose and hemoglobin A1c (HbA1c) levels (p-value = 9.88e-04 and 1.64e-05, respectively), but did not show any significant associations with insulin or C-peptide. Accordingly, we performed functional validation using a miR-223-3p mimic (overexpression) under control and hyperglycemia-induced conditions in a zebrafish model. RESULTS: Over-expression of miR-223-3p alone was associated with significantly higher glucose (42.7 mg/dL, n = 75 vs 38.7 mg/dL, n = 75, p = 0.02) and degenerated retinal vasculature, and altered retinal morphology involving changes in the ganglion cell layer and inner and outer nuclear layers. Assessment of retinal angiogenesis revealed significant upregulation in the expression of vascular endothelial growth factor and its receptors, including kinase insert domain receptor. Further, the pancreatic markers, pancreatic and duodenal homeobox 1, and the insulin gene expressions were upregulated in the miR-223-3p group. CONCLUSION: Our zebrafish model validates a novel correlation between miR-223-3p and DR development. Targeting miR-223-3p in T2D patients may serve as a promising therapeutic strategy to control DR in at-risk individuals.


Assuntos
Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Hiperglicemia , MicroRNAs , Humanos , Animais , Controle Glicêmico , Peixe-Zebra , Fator A de Crescimento do Endotélio Vascular , Insulina , Glucose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...